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𝒏 𝑷  Code Rate

1 𝑝 0.2 1
1 1

3 3
2 𝑝 1 𝑝 3

3 𝑝 0.1040 1
3 0.33

5 5
3 𝑝 1 𝑝 5

4 𝑝 1 𝑝 5
5 𝑝 0.0579 1

5 0.2

7 0.0333 1
7 0.1429

9 0.0196 1
9 0.1111

11 0.0117 1
11 0.0909

Repetition 
Code

Majority 
Voting

0

1

0

1

p

1-p

p

1-p

[Section 3.5]

BSC with 

Probability that more than 
half of the bits are in error



Achievable Performance
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P(
E)

BSC with Repetition Code ( )

𝑛 3
𝑛 5

𝑛 7

For repetition code, it seems that we have 
to sacrifice the rate to reduce 



Designing Channel Encoder

00   ? ? ? ? ?
01   ? ? ? ? ?
10   ? ? ? ? ?
11   ? ? ? ? ?

𝐬 𝐱

2 rows

𝑛 columns

Each “?” can be 0 or 1.
So, there are

possibilities.

𝒔 𝐬
𝐬

𝐬

𝐱

𝐱

𝐱

𝐱

𝑀 2 possibilities

Choose 𝑀 2 from 
2 possibilities to be 
used as codewords.

But we don’t want to use the 
same codeword to represent 
two different info blocks.
So, actually, we need to 
consider

possibilities.

1,048,576 for 𝑛 5, 𝑘 2

35,960
for 𝑛 5, 𝑘 2

[Section 3.5]



MATLAB
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close all; clear all;

% EES315 2020 Example 6.58
% EES452 2020 Examples 3.62, 3.67
C = [0 0 0 0 0; 1 1 1 1 1]; % repetition code

p = (1/100);
PE_minDist(C,p)

>> PE_minDist_demo1

ans =
9.8506e-06

Code C is defined by putting all its (valid) 
codewords as its rows. For repetition 
code, there are two codewords: 00..0 and 
11..1. 

Crossover probability of the binary 
symmetric channel.

[Section 3.5]



MATLAB
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function PE = PE_minDist(C,p)
% Function PE_minDist computes the error probability P(E) when code C
% is used for transmission over BSC with crossover probability p.
% Code C is defined by putting all its (valid) codewords as its rows.
M = size(C,1); % the number of (valid) codewords
k = log2(M);
n = size(C,2); 

% Generate all possible n-bit received vectors
Y = dec2bin(0:2^n-1)-'0';

% Normally, we need to construct an extended Q matrix. However, because
% each conditional probability in there is a decreasing function of the
% (Hamming) distance, we can work with the distances instead of the
% conditional probability. In particular, instead of selecting the max in
% each column of the Q matrix, we consider min distance in each column.
dminy = zeros(1,2^n); % preallocation
for j = 1:(2^n)

% for each received vector y,
y = Y(j,:);
% find the minimum distance 
% (the distance from y to the closest codeword)
d = sum(mod(bsxfun(@plus,y,C),2),2);
dminy(j) = min(d);

end

% From the distances, calculate the conditional probabilities.
% Note that we compute only the values that are to be selected (instead of
% calculating the whole Q first).
n1 = dminy; n0 = n-dminy;
Qmax = (p.^n1).*((1-p).^n0);
% Scale the conditional probabilities by the input probabilities and add 
% the values. Note that we assume equally likely input.
PC = sum((1/M)*Qmax);
PE = 1-PC;
end

PE_minDist.m [Section 3.5]



P(
E)
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BSC with 

repetition code with 𝑛 5 in Exercise 9 (2019)
0.0579

0.1040

0.2000

Optimal codes that we found in 
Exercise 9 (2019)

Example given in Exercise 9 (2019)

0.2832 

0.2218 
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Achievable Performance
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BSC with 

There are other codes that have 
rate 0.2. Here (and in 
Exercise 9 (2019)), we consider 
all the codes with 𝑛 5 and 
𝑘 1.



P(
E)

Achievable Performance
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BSC with 

Note that 𝑛, 𝑘 5,1 is not the 
only family of codes that give rate 
0.2.
𝑛, 𝑘 10,2 , 15,3 , 20,4 , …

also corresponds to rate 0.2.

Will these codes have smaller 𝑃  ?



P(
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BSC with 

Note that 𝑛, 𝑘 5,1 is not the 
only family of codes that give rate 
0.2.
𝑛, 𝑘 10,2 , 15,3 , 20,4 , …

also corresponds to rate 0.2.

At rate = 0.2, 
Shannon found that we can make 𝑃 
as small we want (as long as it is 0). 
With 𝑛 large enough, there will be a 
code that gives the desired 𝑃  (or 
smaller). 



Reliable communication
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 Reliable communication (at a particular rate) means 
arbitrarily small error probability can be achieved (at that 
rate).

 In our example, Shannon showed that reliable 
communication is achievable at rate .

 Turn out that reliable communication is not achievable at rate 
.



P(
E)

Achievable Performance
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BSC with 

Here we consider all the 
codes with 𝑛 5 and 
𝑘 2.
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BSC with Note that 𝑛, 𝑘 5,2 is 
not the only family of codes 
that give rate 0.4.
𝑛, 𝑘 10,4 , 15,6 , 
20,8 , … also corresponds 

to rate 0.4.

At rate  0.4, 
Shannon found that we 
cannot make 𝑃  as small 
as we want; even when we 
use large 𝑛.

So, how can we determine 
which rate can have 
arbitrarily small 𝑃  ?



P(
E)
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50

BSC with 

𝐶 1 𝐻 𝑝 0.2781



Channel Capacity
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Channel Capacity

“Operational”: max rate at which reliable
communication is possible

“Information”: 
𝐩

[bpcu]

Arbitrarily small error 
probability can be achieved.

Shannon [1948] showed that these two quantities are actually the same.

[Section 4.2]

[Section 4.3]




