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- Example: Repetition Code  [bection 5.0]

BSC with p = 0.2

Repetition Majority
Code Voting
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Achievable Performance

BSC with p = 0.2
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For repetition code, it seems that we have

to sacrifice the rate to reduce P (&)
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[Section 3. 5]\

Designing Channel Encoder

s X Each “?” can be 0 or 1.
.
00?2?7727 So, there are
K 01?2?2777 k
2% rows < 10122277 2(”2 ) = 1048576 forn =5,k = 2
L 11?77?2727 possibilities.
- e - But we don’t want to use the
Nn columns

same codeword to represent

two different info blocks.
M = Zk possibilities

So, actually, we need to

Choose M = 2% from ConSider

2" possibilities to be
used as codewords. 2 n
2 k= 35,960

forn=5k=2
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MATLAB

close all; clear all;

% EES315 2020 Example 6.58

[Sectkn13.5i\\

% EES452 2020 Examples 3.62, 3.67

C=[00000; 1111 1];

p = (1/100);
PE_minDist(C,p)

% repetition code

codewords as its rows. For repetition

\11..1.

(" Code C is defined by putting all its (Valid)\

code, there are two codewords: 00..0 and

J

(Crossover probability of the binary}

Lsymmetric channel.

>> PE _minDist _demol

ans =
9.8506e-06




MATLAB

PE_minDist.m [Section 3.5]

function PE = PE minDist(C,p)

Function PE_minDist computes the error probability P(E) when code C
is used for transmission over BSC with crossover probability p.

% Code C is defined by putting all i1ts (valid) codewords as its rows.

M = size(C,1); % the number of (valid) codewords
k = log2(M);
n = size(C,2);

% Generate all possible n-bit received vectors
Y = dec2bin(0:2"n-1)-"0";

% Normally, we need to construct an extended Q matrix. However, because
% each conditional probability in there is a decreasing function of the
% (Hamming) distance, we can work with the distances instead of the
% conditional probability. In particular, instead of selecting the max iIn
% each column of the Q matrix, we consider min distance in each column.
dminy = zeros(1,2™n); % preallocation
for j = 1:(2™n)

% for each received vector vy,

y =Yd.:);

% Find the minimum distance

% (the distance from y to the closest codeword)

d = sum(mod(bsxfun(@plus,y,C),2),2);

dminy() = min(d);
end

% From the distances, calculate the conditional probabilities.

% Note that we compute only the values that are to be selected (instead of
% calculating the whole Q first).

nl = dminy; nO = n-dminy;

Qmax = (p-"nl).*((1-p)-"n0);

% Scale the conditional probabilities by the input probabilities and add

% the values. Note that we assume equally likely input.

PC = sum((1/M)*Qmax);

PE = 1-PC;

end
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Achievable Performance

BSC with p = 0.2 o
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Achievable Performance

BSC with p = 0.2 N
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Achievable Performance

BSC with p = 0.2
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Note that (n, k) = (5,1) is not the
only family of codes that give rate =
0.2.

(n, k) = (10,2), (15,3), (20,4), ...

also corresponds to rate = 0.2.

Atrate = 0.2,

Shannon found that we can make P (&)
as small we want (as long as it is > 0).
With n large enough, there will be a
code that gives the desired P(&) (or

smaller).
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Reliable communication

* Reliable communication (at a particular rate) means
arbitrarily small error probability can be achieved (at that

rate).

® In our example, Shannon showed that reliable

communication is achievable at rate = 0.2.

® Turn out that reliable communication is not achievable at rate

= 0.4.
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Achievable Performance

BSC with p = 0.2
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Note that (n, k) = (5,2) is
not the only family of codes
that give rate = 0.4.

(n, k) = (10,4), (15,6),
(20,8), ... also corresponds
to rate = 0.4.

Atrate = 0.4,
Shannon found that we
cannot make P () as small
as we want; even when we
use large 1.

]
So, how can we determine

which rate can have

arbitrarily small P(£)?
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Channel Capacity

[Section 4.2]

“Operational”: max rate at which reliable

/ communication is possible

Channel Capacity Arbitrarily small error
probability can be achieved.

“Information”: [max 1(X; Y)} [bpcu]
[Section 4.3]

Shannon [1948] showed that these two quantities are actually the same.

(- n,






