## Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th<br>4. Mutual Information and Channel Capacity

### 4.2 Operational Channel Capacity

## Example: Repetition Code

BSC with $p=0.2$

| Repetition |
| :--- | :--- | :--- |
| Code |

## Achievable Performance

BSC with $p=0.2 \quad$ Repetition Code $(k=1)$


## Designing Channel Encoder



Each "?" can be 0 or 1 .
So, there are

$$
2^{\left(n 2^{k}\right)}=1,048,576 \text { for } n=5, k=2
$$

possibilities.
But we don't want to use the same codeword to represent two different info blocks.
So, actually, we need to consider

$$
\binom{2^{n}}{2^{k}}=35,960
$$

possibilities.

## MATLAB

```
close all; clear all;
% EES315 2020 Example 6.58
% EES452 2020 Examples 3.62, 3.67
C = [0 0 0 0 0; 1 1 1 1 1]; % repetition code
p = (1/100);
PE_minDist(C,p)
```

Code C is defined by putting all its (valid) codewords as its rows. For repetition code, there are two codewords: $00 . .0$ and 11..1.

```
>> PE_minDist_demo1
ans =
    9.8506e-06
```

        Crossover probability of the binary symmetric channel.
    
## PE_minDist.m

## function PE = PE_minDist(C, p)

\% Function PE_minDist computes the error probability $P(E)$ when code $C$
\% is used for transmission over BSC with crossover probability p.
\% Code C is defined by putting all its (valid) codewords as its rows. M = size(C,1); \% the number of (valid) codewords
k $=\log 2(M)$;
n = size(C, 2);
\% Generate all possible n-bit received vectors
$Y=\operatorname{dec} 2 b i n\left(0: 2^{\wedge} n-1\right)-10 ' ;$
\% Normally, we need to construct an extended Q matrix. However, because
\% each conditional probability in there is a decreasing function of the
\% (Hamming) distance, we can work with the distances instead of the
\% conditional probability. In particular, instead of selecting the max in
\% each column of the Q matrix, we consider min distance in each column.
dminy $=$ zeros(1,2^n); \% preallocation
for $j=1:\left(2^{\wedge} n\right)$
\% for each received vector $y$,
$y=Y(j,:)$;
\% find the minimum distance
\% (the distance from y to the closest codeword)
$\mathrm{d}=\operatorname{sum}(\bmod (\mathrm{bsxfun}(@ \mathrm{plus}, \mathrm{y}, \mathrm{C}), 2), 2)$;
dminy(j) $=\min (d)$;
end
\% From the distances, calculate the conditional probabilities.
\% Note that we compute only the values that are to be selected (instead of \% calculating the whole Q first).
$\mathrm{n} 1=$ dminy; $\mathrm{n} 0=\mathrm{n}$-dminy;
Qmax = (p.^n1).*((1-p).^n0);
\% Scale the conditional probabilities by the input probabilities and add
\% the values. Note that we assume equally likely input.
$P C=\operatorname{sum}((1 / M) * Q \max )$;
PE = 1-PC;
end

## Achievable Performance

BSC with $p=0.2$ N


## Achievable Performance

BSC with $p=0.2$


There are other codes that have
rate $=0.2$. Here (and in
Exercise 9 (2019)), we consider
all the codes with $n=5$ and $k=1$.


## Achievable Performance

BSC with $p=0.2$


Note that $(n, k)=(5,1)$ is not the only family of codes that give rate $=$ 0.2 .
$(n, k)=(10,2),(15,3),(20,4), \ldots$ also corresponds to rate $=0.2$.

Will these codes have smaller $P(\mathcal{E})$ ?


## Achievable Performance

BSC with $p=0.2$


Note that $(n, k)=(5,1)$ is not the only family of codes that give rate $=$ 0.2 .
$(n, k)=(10,2),(15,3),(20,4), \ldots$ also corresponds to rate $=0.2$.

At rate $=0.2$,
Shannon found that we can make $P(\mathcal{E})$ as small we want (as long as it is $>0$ ). With $n$ large enough, there will be a code that gives the desired $P(\mathcal{E})$ (or smaller).


## Reliable communication

- Reliable communication (at a particular rate) means arbitrarily small error probability can be achieved (at that rate).
- In our example, Shannon showed that reliable communication is achievable at rate $=0.2$.
- Turn out that reliable communication is not achievable at rate $=0.4$.


## Achievable Performance

BSC with $p=0.2$


## Achievable Performance



## Achievable Performance



## Channel Capacity

[Section 4.2]
"Operational": max rate at which reliable communication is possible

Channel Capacity


Arbitrarily small error probability can be achieved.
"Information": $\max I(X ; Y)$ [bpcu] [Section 4.3]

Shannon [1948] showed that these two quantities are actually the same.

